曲曲的秘密学术基地

纯化欲望、坚持严肃性

欢迎!我是曲泽慧(@zququ),目前在深圳(ICBI,BCBDI,SIAT)任职助理研究员。


病毒学、免疫学及结构生物学背景,可以在 RG 上找到我已发表的论文

本站自2019年7月已访问web counter

为什么矩阵行、列空间维度相同

转自:stackexchange 论坛

Proof. Suppose that $\lbrace v_1,v_2,\dots,v_k\rbrace$ is a basis for the column space of $A$. Then each column of $A$ can be expressed as a linear combination of these vectors; suppose that the $i$-th column $c_i$ is given by

$$c_i = \gamma_{1i}v_1+\gamma_{2i}v_2+\dots+\gamma_{ki}v_k$$

Now form two matrices as follows: $B$ is an $m\times k$ matrix whose columns are the basis vectors $v_i$, while $C=(\gamma_{ij})$ is a $k\times n$ matrix whose $i$-th column contains the coefficients $\gamma_{1i},\gamma_{2i,}\dots,\gamma_{ki}$. It then follows$^7$ that $A=BC$.

However, we can also view the product $A= BC$ as expressing the rows of $A$ as a linear combination of the rows of $C$ with the $i$-th row of $B$ giving the coefficients for the linear combination that determines the $i$-th row of $A$. Therefore, the rows of $C$ are a spanning set for the row space of $A$, and so the dimension of the row space of $A$ is at most $k$. We conclude that:

$$\dim(\operatorname{rowsp}(A))\leq\dim(\operatorname{colsp}(A))$$

Applying the same argument to $A^t$, we conclude that:

$$\dim(\operatorname{colsp}(A))\leq\dim(\operatorname{rowsp}(A))$$

and hence these values are equal

Last One

From Logistic Regression to Multi-class Classification and Neural Networks

Back Propagation给定一个神经网络,我们想通过Back Propagation的方法来求解图中任意节点的误差值( $\delta$ )。图中,我将input unit定义为红色,并将output unit定义为绿色。这样很容易理解, input layer中只存在有 input unit,而输出层中也就只有绿色的 output unit。我们假设有,\[\delta = \frac{J}{z} \tag{1}\]其中 $J$ 为 cost function,而,$z$ 即为对...…

DeepLearningMore
Next One

神经网络拓扑排序反向传播算法的代码实现

# by defining a dictionary, classfying the both inputs (keys) and outputs (values)from functools import reduceimport randomdef topologic(graph): ''' { node:[node1, node2, ..., node] x: [linear], k: [linear], b: [l...…

MachineLearningMore