曲曲的秘密学术基地

纯化欲望、坚持严肃性

欢迎!我是曲泽慧(@zququ),目前在深圳(ICBI,BCBDI,SIAT)任职助理研究员。


病毒学、免疫学及结构生物学背景,可以在 RG 上找到我已发表的论文

本站自2019年7月已访问web counter

LA3.3 The Complete Solution to Ax=b

Simply show the Row Echelon Form R with b at the right side

At the LA3.2, we didn’t pay much attention to the right side $b$, it is because $b$ is $0$ when we only talk about the nullspace of A.

For now, in LA3.3, $b$ is not zero. As the Row Echelon Form $R$ is very important which can show clearly how the free column is combinated by the pivot column (LA3.2). How to make show the Row Echelon Form R? We use the augmented matrix to make like this,
$$\begin{bmatrix}A&b\\end{bmatrix}$$ —> $$\begin{bmatrix}R&d\\end{bmatrix}$$ and make this transformation very naturally and simply.

One Particular Solution $Ax_p = b$

For an easy solution $x_p$, choose the free variables to be zero, and from free variables = zero, we can get the pivot variables from d.

For a solution to exist, zero rows in $R$ must also be zero in $d$. Since $I$ is in the pivot rows and pivot columns of $R$, the pivot variables in $x_{particular}$ come from $d$.

Now we get 2 equations, as seen below:

$x_{particular}$ solves $Ax_p=b$
$x_{nullspace}$ solves $Ax_n=0$

Here we introduce the complete solution of x, and very very gracefully.

$x = x_p + x_n=$ $$\begin{bmatrix}1\0\6\0\\end{bmatrix}$$ + $x_2$ $$\begin{bmatrix}-3\1\0\0\\end{bmatrix}$$ + $x_4$ $$\begin{bmatrix}-2\0\-4\1\\end{bmatrix}$$ , for example.

Here come an easy question. When $m = n =r$, what will happen?
The particular solution is the one and the only solution $x_p = A^{-1}b$. There are no special or free variables. $R=I$ has no zero rows. The only vector in the nullspace is $x_n=0$. The complete solution is $x=x_p+x_n=A^{-1}b+0$.

Every matrix $A$ with full column rank $(r=n)$ has all these properties:

  1. All columns of $A$ are pivot columns.
  2. There are no free variables or specitial solutions.
  3. The nullspace $N(A)$ contains only the zero vector $x=0$.
  4. If $Ax=b$ has a solution (it might not) then it has only one solution.

With full column rank, $Ax=b$ has one solution or no solution ($m>n$, overdetermined).

The Complete Solution

Now let’s talk about the other extreme case, full row rank.

Every matrix $A$ with full row rank $(r=m)$ has all these properties:

  1. All rows have pivots, and $R$ has no zero rows.
  2. $Ax = b$ has a **solution for every right side b.
  3. The column space is the whole space $R^m$.
  4. There are $n-r=n-m$ special solutions in the nullspace of $A$.

If $m<n$ the equation $Ax=b$ is underdetermined (many solutions).

In this case with $m$ pivots, the rows are “linearly independent”. So the columns of $A^T$ are linearly independent. The nullspace of $A^T$ is the zero vector.

It’s because, the columns can’t be in the same plane to make the the nullspace of $A^T$ to be zero vector.

Last One

汇编语言 3.8 3.9 栈顶超界问题 push pop

3.8 栈顶超界问题之前在3.6,3.7我们知道了8086CPU用SS和SP指示栈顶的地址,并提供push和pop指令实现入栈和出栈。在出栈或者入栈时,可能会出现超出栈空间的情况,如下所示:这里我们引入一个新的概念,栈空间。栈顶超界是危险的,因为栈空间之外的空间里很可能存放了具有其他用途的数据。CPU在执行push指令的时候考检测栈顶上线寄存器、在执行pop指令时候检测栈底寄存器保证不会超界。但8086CPU不具有这个功能,它只知道栈顶在何处(SS:SP指示),而不知道我们安排的栈空间的大...…

汇编语言More
Next One

汇编语言 3.6 3.7 栈 CPU栈机制

3.6 栈栈是一种具有特殊的访问方式的存储空间。它的特殊性就在于,最后进入这个空间的数据,最先出去。栈有两个基本的操作:入栈和出栈。入栈就是将新的元素放在栈顶,出栈就是从栈顶去除一个元素。栈顶的元素总是最后入栈,需要出栈时,又最先被从栈中取出。栈的这种操作规则被称为:LIFO1 (Last In First out)。3.7 CPU提供的栈机制8086CPU最基本的两个入栈和出栈指令PUSH 和 POP。push ax表示将寄存器ax中的数据送入栈中,pop ax表示从栈顶取出数据送入ax...…

汇编语言More