曲曲的秘密学术基地

纯化欲望、坚持严肃性

欢迎!我是曲泽慧(@zququ),目前在深圳(ICBI,BCBDI,SIAT)任职助理研究员。


病毒学、免疫学及结构生物学背景,可以在 RG 上找到我已发表的论文

本站自2019年7月已访问web counter

First Glimpse on Fourier Shell Correlation - FSC Behaviour Within A Shell

Let us first assume that the two Fourier-space 3D volumes to be compared each contain a signal “$S(r)$” with an uncorrelated additive noise component “$N(r)$”. And the signal component in bothe volumes can be written as:

Eq. (1)

$$ \begin{array}{l}{F_{1}(r) \approx S(r)+N_{1}(r)} \\ {F_{2}(r) \approx S(r)+N_{2}(r)}\end{array} $$

Here, because the noise component $N(r)$ is random, but we need the same signal $S(r)$.

We define $FSC_u$ as no-normalised, cross-correlation over a shell $r_i$ will be:

Eq. (2)

$$ \begin{aligned} \mathrm{FSC}{\mathrm{u}}\left(r{i}\right) \approx & \sum_{r \in r_{i}} F_{1}(r) \cdot F_{2}(r) \\ \approx & \sum_{r \in r_{i}} S^{2}(r)+\sum_{r \in r_{i}} S(r) \cdot N_{1}(r) \\ &+\sum_{r \in r_{i}} S(r) \cdot N_{2}(r)+\sum_{r \in r_{i}} N_{1}(r) \cdot N_{2}(r) \end{aligned} $$

In (1) and (2), $F(r)$ is the “structure factor” at position $r$ in Fourier space. And all Fourier-space voxels “$r$” that are contained in the shell “$r_i$”

The expected statistical behaviour of These 4 terms are important!

Let us look at the variance of both the signal and noise components separately.

We have the average of the squares for the signal component and noise component, respectively.

Eq. (3)

$$ \overline{S^{2}}\left(r_{i}\right)=\frac{1}{n\left(r_{i}\right)} \cdot \sum_{r \in r_{i}} S^{2}(r) $$

and

Eq. (4)

$$ \overline{N^{2}}\left(r_{i}\right)=\frac{1}{n\left(r_{i}\right)} \cdot \sum_{r \in r_{i}} N^{2}(r) $$

Which will give this equation ( I didn’t get it here clearly, hope people can tell me why? )

Eq. (5)

$$ \overline{N_{1} N_{2}}\left(r_{i}\right)=\frac{1}{n\left(r_{i}\right)} \cdot \sum_{r \in r_{i}} N_{1}(r) \cdot N_{2}(r) \approx \frac{1}{\sqrt{n\left(r_{i}\right)}} \cdot \overline{N^{2}}\left(r_{i}\right) $$

This is called the cross-term, which might ( I think ) reflect the relationship between the situation of two different components respectively cross interacted and the situation of the mixed components work together to show, maybe the real situation.

The explanation of the cross-term is discussed in (Saxton and Baumeister, 1982).

From the Eq. (5), we can get the cross-term estimation of signal and noise:

Eq. (6)

$$ \overline{S N}\left(r_{i}\right)=\frac{1}{n\left(r_{i}\right)} \cdot \sum_{r \in r_{i}} S(r) \cdot N_{1}(r) \approx \frac{1}{\sqrt{n\left(r_{i}\right)}} \cdot \bar{S}\left(r_{i}\right) \cdot \bar{N}\left(r_{i}\right) $$

Here, $SN$ was once thought to be $zero$, because it’s wrongly thought to be that the signal is not correlated to the noise.

We substitute (6), (5) into (2), and get,

Eq. (7)

$$ \begin{aligned} \mathrm{FSC}{\mathrm{u}}\left(r{i}\right) \approx & n\left(r_{i}\right) \cdot \overline{S^{2}}\left(r_{i}\right)+2 \sqrt{n\left(r_{i}\right)} \cdot \bar{N}\left(r_{i}\right) \cdot \bar{S}\left(r_{i}\right) \\ &+\sqrt{n\left(r_{i}\right)} \cdot \overline{N^{2}}\left(r_{i}\right) \end{aligned} $$

Which I called it the mixed data. Without Signal and Noise cross-term.

To obtain the expected behaviour of the normalised FSC, we must also look at the behaviour of the FSC norm.

Eq. (8)

$$ \mathrm{FSC}{n}\left(r{i}\right)=\sqrt{\left(\sum_{r \in r_{r}} S^{2}(r)+\sum_{r \in r_{r}} 2 \cdot S(r) \cdot N_{1}(r)+\sum_{r \in \epsilon_{r}} N_{1}^{2}(r)\right) \cdot\left(\sum_{r \in r_{r}} S^{2}(r)+\sum_{r \in r_{r}} 2 \cdot S(r) \cdot N_{2}(r)+\sum_{r \in r_{r}} N_{2}^{2}(r)\right)} $$

Which can also processed from substitution (6,5 to eq. 2)

Eq. (9)

$$ \begin{aligned} \mathrm{FSC}{n}\left(r{i}\right) \approx & \sum_{r \in r_{r}} S^{2}(r)+\sum_{r \in r_{r}} 2 \cdot S(r) \cdot N(r)+\sum_{r \in r_{r}} N^{2}(r) \\ \approx & n\left(r_{i}\right) \cdot \overline{S^{2}}\left(r_{i}\right)+2 \sqrt{n\left(r_{i}\right)} \cdot \bar{N}\left(r_{i}\right) \cdot \bar{S}\left(r_{i}\right) \\ &+n\left(r_{i}\right) \cdot \overline{N^{2}}\left(r_{i}\right) \end{aligned} $$

In this way, finally we get the FSC:

Eq. (10)

$$ \begin{aligned} \operatorname{FSC}\left(r_{i}\right) &=\frac{\mathrm{FSC}{\mathrm{u}}\left(r{i}\right)}{\mathrm{FSC}{n}\left(r{i}\right)} \\ & \approx \frac{n\left(r_{i}\right) \cdot \bar{S}^{2}\left(r_{i}\right)+2 \sqrt{n\left(r_{i}\right)} \cdot \bar{N}\left(r_{i}\right) \cdot \bar{S}\left(r_{i}\right)+\sqrt{n\left(r_{i}\right)} \cdot \overline{N^{2}}\left(r_{i}\right)}{n\left(r_{i}\right) \cdot \bar{S}^{2}\left(r_{i}\right)+2 \sqrt{n\left(r_{i}\right)} \cdot \bar{N}\left(r_{i}\right) \cdot \bar{S}\left(r_{i}\right)+n\left(r_{i}\right) \cdot \overline{N^{2}}\left(r_{i}\right)} \end{aligned} $$

For short and better illustration,

Eq. (11)

$$ \mathrm{FSC}{12}\left(r{i}\right)=\frac{\sum_{r \in r_{i}} F_{1}(r) \cdot F_{2}(r)^{*}}{\sqrt{\sum_{r \in r_{i}} F_{1}^{2}(r) \cdot \sum_{r \in r_{i}} F_{2}^{2}(r)}} $$

Where $F(r)$ is the complex “structure factor” at position in Fourier space, and “$*$” denotes complex conjugation.

Here, actually, I only get some information from a very blur aspect. And next, I will learn something more about cross correlation.

Reference

  1. van Heel M, Schatz M. Fourier shell correlation threshold criteria. Journal of Structural Biology. 2005;151(3):250-262. doi:10.1016/j.jsb.2005.05.009.

  2. SAXTON WO, BAUMEISTER W, microscopy WBJO, 1982. The correlation averaging of a regularly arranged bacterial cell envelope protein. Wiley Online Library.

Last One

汇编语言 3.10 栈段

3.10 栈段对于8086PC机,可以根据需要,将一组内存单元定义为一个段。我们可以将长度为N(N<=64KB)的一组地址连续、起始地址为16的倍数的内存单元,当作栈空间来用,从而定义了一个栈段。例如10010H~1001FH这段长度为16字节的内存空间当作栈来用,以栈的方式进行访问。这段空间就可以成为一个栈段,段地址为1001H,大小为16字节。通过将SS:SP指向我们定义的栈段来使得如push、pop等栈操作指令访问我们定义的栈段。问题 1如果将10000H~1FFFFH这段空间...…

汇编语言More
Next One

汇编语言 3.8 3.9 栈顶超界问题 push pop

3.8 栈顶超界问题之前在3.6,3.7我们知道了8086CPU用SS和SP指示栈顶的地址,并提供push和pop指令实现入栈和出栈。在出栈或者入栈时,可能会出现超出栈空间的情况,如下所示:这里我们引入一个新的概念,栈空间。栈顶超界是危险的,因为栈空间之外的空间里很可能存放了具有其他用途的数据。CPU在执行push指令的时候考检测栈顶上线寄存器、在执行pop指令时候检测栈底寄存器保证不会超界。但8086CPU不具有这个功能,它只知道栈顶在何处(SS:SP指示),而不知道我们安排的栈空间的大...…

汇编语言More